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Abstract— Being able to take 3D curvilinear trajectories,
steerable needles can move around critical anatomical struc-
tures and precisely reach clinically significant targets in a
minimally invasive way. Motion planning for steerable nee-
dle has been studied to automatically generate obstacle-free,
kinematically feasible, and low targeting error trajectories
for needles to follow. For steerable needles, a trajectory is
kinematically feasible if the curvatures along it is bounded
by some maximum curvature κmax. Unlike the case in 2D,
planning bounded-curvature trajectories in 3D still remains
an open question. More specifically, it is unclear under what
condition a bounded-curvature trajectory between two con-
figurations exists and how to compute a bounded-curvature
trajectory given two “reachable” configurations. In this work,
we consider so-called “close-range reachability” for bounded-
curvature trajectories in 3D, where the trajectory length is
comparable to the minimum radius of curvature rmin = 1

κmax
(unlike the cases of car driving where the distance to travel is
much longer than the turning radius). We provide the definition
of closely reachable configurations and give a proof sketch for
the sufficient and necessary conditions for two configurations
to be closely reachable. We also provide a numerical method to
compute a bounded-curvature trajectory between two closely
reachable configurations.

I. CLOSE-RANGE REACHABILITY

In this section, we first introduce the notion of closely
reachable configurations and provide a proof sketch to state
the sufficient and necessary conditions for two configurations
to be closely reachable.

Definition 1 (Closely reachable configuration). Let x0,x1 ∈
X * be two configurations and κmax be the maximum cur-
vature. Let rmin = 1/κmax be the minimum radius of
curvature. We say x1 is a closely reachable configuration
of x0 if

(i) ∥Pos(x1)−Pos(x0)∥2 ≤ 2rmin, where Pos(x) ∈ R3 is
the translation part of x, and

(ii) there exists some bounded-curvature trajectory, whose
length is no longer than πrmin, that starts from x0 and
terminates at x1.

Denote the two configurations we are considering as x0

and x1, and we have xi = (pi, qi) representing the translation
and orientation of the configuration. We start with an outline
of the proof. We start with defining a region of 3D points
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*Here, we make a common assumption that the needle body follows
the tip, thus X ⊂ SE(3) represents both 3D position and 3D orientation
of the needle tip. Additionally, in the case for steerable needles, the needle
can always rotate without insertion to achieve any desired roll angle, we do
not explicitly mention this step in the following discussion.
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Fig. 1: Illustration of the forward and backward reachable regions associated
with configuration x. We additionally show an example of unreachable
sphere and the circular curve Cx

center.

that are closely reachable for a given configuration. It is
obvious that for any configuration with p1 to be reachable
from x0, p1 should lie in the forward reachable region of
the source configuration x0. Similarly, p0 should lie in the
backward reachable region of the target configuration x1.
By simultaneously considering the forward reachable region
of x0 and the backward reachable region of x1, we argue
that there must be a connected region, in the intersection of
the two reachable regions, that includes both p0 and p1. We
finally show that as long as such a connected region exists,
we will be able to construct a curvature-bounded trajectory,
with limited length, that connects x0 and x1.

Lemma 1 (Forward reachable region). Consider a configura-
tion x = (p, q) where p = (0, 0, 0) and q = (1, 0, 0, 0). Then
all closely reachable configurations of x, lie in a trumpet-
like region defined as the collection of points (x, y, z) ∈ R3

such that

∀α ∈ [0, 2π), β ∈ [0, π] ,

x = rmin · (1− cosβ) · cosα,
y = rmin · (1− cosβ) · sinα,

rmin · sinβ ≤ z ≤
√
r2min − x2 − y2.

Proof Sketch. First, assume xr is a closely reachable config-
uration of x and the translation part of xr is pr. According
to the definition of closely reachable configurations, ∥pr −
p∥2 ≤ rmin, thus pr ∈ cl(B(p, rmin)), where B(p, rmin) is
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Fig. 2: Illustration of the forward reachable region. Left: Points inside an
unreachable sphere are only reachable with “U”-shaped trajectories that are
longer than πrmin. Right: A visualization of the surfaces defining RF,
RF is shown as the blue-shaded region. The upper bound of β is π since
the radius of Bur(α) equals to the radius of B(p, rmin).

the open sphere centered at p and with radius rmin.
Now consider a trajectory leaving the the source con-

figuration x. For an arbitrary roll angle α ∈ [0, 2π),
when the needle consistently takes the maximum curvature
with out rotation, a circular arc trajectory is obtained on
the plane sinα · x − cosα · y = 0. This is also the
extreme case the needle could achieve, while any point
inside B ((rmin · cosα, rmin · sinα, 0), rmin) is not reachable
with trajectory length no longer than πrmin given curvature
constraints.† See Fig. 2 for illustration.

Thus we have

pr ∈ RF =

cl(B(p, rmin)) ∩

R3 \
⋃

α∈[0,2π)

Bur(α))

 ∩ {(x, y, z)|z ≥ 0},

where Bur(α) = B ((rmin · cosα, rmin · sinα, 0), rmin) is
the (open) unreachable sphere determined by α. We require
z ≥ 0 since the initial orientation is facing positive z
direction and we assume the needle only moves forward. As
we can see in Fig. 2, the surface of the unreachable region
∪α∈[0,2π)Bur(α) is trumpet-shaped.

Finally, following our parameterization, the upper bound
of β is π which corresponds to the intersecting curve of the
two surfaces (see Fig. 2).

Similarly, we can have the backward reachable region,
denoted as RB that follows

RB =

cl(B(p, rmin)) ∩

R3 \
⋃

α∈[0,2π)

Bur(α)

 ∩ {(x, y, z)|z ≤ 0}.

Fig. 1 provides visualization of the forward reachable region
RF and the backward reachable region RB in 3D.‡ We note
that similar ideas of trumpet-shaped regions have been used
in existing work on steerable needles, e.g. [2]–[4].

Note that the curve composed of centers of the unreachable
spheres of is a circle. For example, for x with p = (0, 0, 0)

†This idea follows the Pestov–Ionin theorem [1].
‡For simplicity, in figures in this section, we only show the trumpet

surface without the upper bound for z.

and q = (1, 0, 0, 0), the circle can be written as

∀α ∈ [0, 2π),

x = rmin · cosα, y = rmin · sinα, z = 0.

For any configuration x = (p, q), we denote such circle as
Cxcenter. The normal vector of the trumpet surface at point
p′ ∈ R3 is the direction from the center of a corresponding
sphere center to p′. Here, the corresponding sphere center of
p′ is the intersecting point of Cxcenter and the plane defined
by q and p′. See Fig. 1 for illustration.

Next, consider two configrurations x0,x1 ∈ X with xi =
(pi, qi). To facilitate the following discussions, we denote
the forward reachable region of x0 as RF

0 , the backward
reachable region of x1 as RB

1 , and the trumpet surface of
RF

0 as SF0 , and the trumpet surface of RB
1 as SB1 .

We now state the major theorem about close reachability.

Theorem 1. For two configurations x0,x1 ∈ X , x1 is
closely reachable from x0 if and only if

(i) p1 ∈ RF
0 , p0 ∈ RB

1 ,

(ii) min
α1∈[0,2π)

{
max

α0∈[0,2π)
∥Cx0

center(α0)− Cx1
center(α1)∥2

}
≥

2 · rmin.
Additionally, if x1 is closely reachable from x0, there ex-
ists a curvature bounded trajectory from x0 to x1 that is
smooth and composed of three trajectory segments, with
non-negative length, whose curvatures are κmax, 0, κmax,
respectively.

Proof Sketch. We first prove that if x1 is closely reachable
from x0, the two conditions (i) and (ii) above are satisfied.
Intuitively, if x1 is closely reachable from x0, there exists
some bounded-curvature trajectory σcb that satisfies ∀s ∈
[0, ℓ(σcb)], σcb(s) ∈ RF

0 ∩ RB
1 . This implies that if the

intersection ofRF
0 andRB

1 does not have a connection region
that includes both p0 and p1, then there is no physical space
for σcb to travel through from p0 to p1. Some examples and
counter examples are shown in Fig. 3.

We now formalize this idea. According to Lem. 1, it
is straightforward that the first condition, p1 ∈ RF

0 , p0 ∈
RB

1 , is necessary . For the second condition, we use proof
by contradiction. Namely, if the second condition is not
satisfied, it is not possible for x1 to be closely reachable
from x0.

Here, d = ∥Cx0
center(α0) − Cx1

center(α1)∥2 is the Euclidean
distance between the sphere centers of two unreachable
regions, one for x0 and the other for x1. If d > 2 · rmin,
the two spheres do not intersect; if d = 2 · rmin, the two
spheres are tangent; and if d < 2 · rmin, the two spheres are
intersecting. Denote

d∗ = min
α1∈[0,2π)

{
max

α0∈[0,2π)
∥Cx0

center(α0)− Cx1
center(α1)∥2

}
.

If d∗ < 2 · rmin, there must exists one unreachable sphere
centered at Cx1

center(α
∗
1) (corresponding to d∗) that intersects

with spheres centered at every Cx0
center(α0),∀α0 ∈ [0, 2π).

This indicates that all possible trajectories in RF
0 from p0
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Fig. 3: Examples of closely reachable configurations (top) and non-closely
reachable configurations (bottom). In the bottom examples, x1 is not
reachable because (i) both p0 and p1 are not in the reachable region; (ii)
p0 or p1 is not in the reachable region; or (iii) although both p0 and p1 are
in the reachable region, the intersection of the two reachable regions does
not connect p0 and p1.
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Fig. 4: Example of a closely reachable case and a closely unreachable case,
considering d∗ and Cx1

center(α
∗
1).

will enter an unreachable sphere of x1 before reaching p1.§

See Fig. 4. Thus x1 is not closely reachable from x0.
We now prove that if both conditions (i) and (ii) hold, x1 is

closely reachable from x0. We approach this by constructing
a trajectory from x0 to x1, composed of three trajectory
segments whose curvatures are κmax, 0, κmax, respectively.
If such trajectory exists, x1 is by definition closely reachable.

This proof relies on a physical model of an ideal elastic
rubber string. That is, consider the scenario where we have
an elastic rubber string whose ends are firmly attached to
the 3D positions p0 and p1 respectively. Our idea is to
analyze this physical system and find the shape of the elastic
rubber string (when there exist trumpet surfaces that enforce
the orientations and curvature constraints as detailed later),
which also indicates a trajectory σs that goes from x0 to its
closely reachable configuration x1. If σs satisfies the three-
segment condition, the lemma is proved.

§It is also not possible for p1 to lie on the sphere surface that is exposed
to x0, since if that is the case, the sphere centered at Cx1

center(α
∗
1+π) would

produce a smaller d∗ and violates the construction of α∗
1 .

Fig. 5: The two unreachable spheres defining the minimum gap. With d∗−
2 · rmin ≥ 0, the intersection RF

0 ∩ RB
1 forms a physical space from x0

to x1.

We now state the detailed assumptions for the physical
system. We first assume the elastic rubber string is fully
stretched, infinitely thin, and zero-weighted. If a string is
fully stretched, at each point along the string, there exists
internal tension applied in the direction along the string.
To model the curvature constraints, we assume p0 and p1
each is associated with one trumpet surface, representing the
boundary of the forward reachable region and the backward
reachable region, respectively. We then assume these trumpet
surfaces S0 and S1 are solid, support the elastic rubber string
and have perfectly-zero friction. These assumptions indicate
that the trumpet surfaces can apply forces to the rubber string
only in normal directions. We finally assume there is no other
external force sources, such as gravity and buoyancy.

Before analyzing the shape of the rubber string, we
note that the geometrical meaning of d∗ − 2 · rmin is the
minimum gap between unreachable region of x0 and x1.
With a non-negative minimum gap, there exists a connected
physical space for the string to travel through. See Fig. 5 for
illustration.

We now analyze the shape of the rubber string and we
consider two different cases separately.

Case 1: at least one of p0 and p1 is on S0 ∩ S1. Note
that by construction p0 is on S0 and p1 is on S1. Thus p0 ∈
S0 ∩ S1 indicates p0 is also on S1.

We prove that as long as one point in p0 and p1 is on
S0 ∩ S1, the other point in the two is also on S0 ∩ S1. Here
we only show that if p0 ∈ S0 ∩ S1, then p1 ∈ S0 ∩ S1. The
case with p1 ∈ S0 ∩ S1 can be proved symmetrically.

As p0 ∈ S1, we are able to find the unreachable sphere,
denoted as Bur(S1, p0), that is associated with p0, and the
normal vector for S1 at p0 is denoted as v(S1, p0). Note by
construction p1 is on the surface of Bur(S1, p0). We have
p1 ∈ R0 to guarantee p1 reachable from x0, so either p1 ∈
S0 or p1 ∈ R0 \S0. If p1 ∈ R0 \S0, the unreachable sphere
Bur(S1, p0) and the forward reachable region R0 has non-
empty intersection and the direction vector of q0 is pointing
inside Bur(S1, p0) (see Fig. 6). This cause there to be no
connected region in R0∩R1 that contains p0 and p1, which
violates the definition of closely reachable configuration. So
it is only possible to have p1 ∈ S0 and Bur(S1, p0) tangent
to S0 (See Fig. 6). As the maximum-curvature arc from p0
to p1 on the surface of Bur(S1, p0) is on both S0 and S1,



Fig. 6: Illustration for case 1 that if p0 ∈ S0 ∩ S1, then p1 ∈ S0 ∩ S1.

Fig. 7: Force analysis for a string segment where external force applied to
the segment is shown in thick arrows. The red line shows a stable (possible)
string shape while the dark green line shows an unstable string shape.
Without losing generality, we assume the free end of the segment lies in the
X-Z plane. And we can see that for the unstable case, the overall force the
trumpet applies to the string has a positive Y component which no other
force can compensate. Thus the force applied to the segment is not balanced
and the string shape is unstable. Note it is possible to have all external force
balanced if the string takes a “S” shape, but we can do similar analysis for
its sub-segments and conclude that the shape is still unstable.

it is straight forward that we have one maximum-curvature
arc connecting x0 and x1 as the first segment, and the other
two segments have zero length.

Case 2: p1 is not on S0 and p0 is not on S1. Recall
that by construction p0 is on S0 and p1 is on S1. Since
σs connects p0 and p1, there exist two points represented
by t0, t1 ∈ [0, ℓ(σs)] where σs(t0) is the last point that the
string is on S0 while σs(t1) is the first point that the string
is on S1. We take the string segment [0, t] as one complete
object. Here, t = min(t0, t1) is denoted as the transition
point. According to the force analysis in Fig. 7, since it is
impossible to have friction to compensate for any “sideward”
forces, the segment must follow a maximum-curvature arc
and the direction of the string at σs(t) follows the tangent
direction. Since we can also follow the string from p1 to
p0, symmetrically, we do the same analysis for the segment
[t′, ℓ(σs)] where t′ is a similar transition point for p1.

We have shown the segments [0, t] and [t′, ℓ(σs)] are
maximum-curvature arcs, we now focus on the middle seg-
ment [t, t′]. By construction, we have t ≤ t′. There are three
possible conditions:

(i) t = t′. This indicates the middle segment has zero
length, the three-segment condition is met. Since there’s
no friction, the string is smooth at the transition point.

(ii) t < t′ and σs(t) ̸∈ S1, σs(t
′) ̸∈ S0. Without any other

external force, once the string detaches from S0, it won’t

come back to S0 unless S1 pushes it to do so, but the
string won’t touch S1 until point t′, thus the segment
(t, t′) is not on either of the trumpet surfaces. As there’s
no other external force other than the tension applied to
the segment at the two transition points, the string forms
a straight line. And the string is smooth at the transition
points since there’s no friction. The middle segment is
with curvature 0 and the three-segment condition is met.

(iii) t < t′ and at least one of σs(t) and σs(t
′) is on S0∩S1.

Take σs(t) ∈ S0 ∩ S1 as an example. Denote the string
direction at σs(t) as a vector d(t). To d(t) as is, the
normal direction v(S1, σs(t)) has to be perpendicular to
d(t). Then all possible cases for the unreachable sphere
Bur(S1, σs(t)) forms a new trumpet, on whose surface
lie all possible positions for p1. Since the new trumpet
region is a subset of R0, the maximum-curvature arc
from σs(t) to p1 on Bur(S1, σs(t)) dose not intersect
with S0. So the string would follow such maximum-
curvature arc as S0 won’t apply any force to the segment
to deviate. But this in return indicates t = t′ which
conflicts with the initial assumption. Thus, this final
condition is impossible.

From the above discussion, we have shown that a
curvature-bounded trajectory from x0 to x1 exists. Recall
that the definition of closely reachable configuration further
requires the Euclidean distance between p0 and p1 is no
larger than rmin and the trajectory length is no larger than
2 · rmin. The first condition, p1 ∈ RF

0 , p0 ∈ RB
1 , guarantees

that ∥p0 − p1∥2 ≤ 2rmin. And since trajectory σs lives in
RF

0∩RB
1 and with curvature bounded by κmax, the maximum

possible trajectory length is πrmin.
In conclusion of all above, the lemma is proved.

II. A NUMERICAL METHOD TO COMPUTE
BOUNDED-CURVATURE TRAJECTORIES

A. Check for close-range reachability

Our proposed method works when a configuration is
actually closely reachable. So for any given pair of con-
figurations, we first check if close-range reachability holds.
Following Thm. 1, we just need to check if both conditions
are satisfied. Details is described in Alg. 1.

In Alg. 1 line 3-10, we first check for Thm. 1 condition
(i). In Alg. 1 line 11-16and check for Thm. 1 condition (ii).
Details for Alg. 1 line 14 is illustrated in Fig. 9.

Since we are checking if the minimum d is smaller than
2rmin, we just need to find one α that satisfies line 14-15.

B. Compute a bounded-curvature connection

With the above lemma, we are able to compute the three-
segment trajectories for some examples of closely reachable
configurations (See Fig. 8).

Alg. 2 shows our algorithm to compute the connection.
Here, we compute two transition points t0, t1, together with
x0 and x1, a three-segment connection is defined.

Generally speaking, we iteratively update transition points
t0 and t1 until they both converge to a stable state with an
error lower than a predefined threshold ε.



Fig. 8: Example of the three-segment trajectories for closely reachable configurations. Three segments are shown in yellow, red, and blue respectively. The
maximum curvature segments are intentionally plotted longer (beyond the tangent point) to show the middle segment is tangent to the maximum curvature
segments at the transition points.

Algorithm 1 CloseRangeReachabilityCheck
Input: x0,x1, rmin

1: δ ← 0.01 ▷ Define the check resolution

2: p0 ← Pos(x0), p1 ← Pos(x1)

3: if ∥p0 − p1∥2 > 2rmin then
4: return False ▷ Violates the first condition in Def. 1

5: P01 ← DefinePlane(x0, p1)

6: if ∥p1 − (P01 ∩ Cx0
center)∥2 < rmin then

7: return False ▷ Inside an unreachable sphere

8: P10 ← DefinePlane(x1, p0)

9: if ∥p0 − (P10 ∩ Cx1
center)∥2 < rmin then

10: return False ▷ Inside an unreachable sphere

11: P0 ← DefinePlane(Cx0
center)

12: for α ∈ {0, δ, 2δ, . . . , nδ}, where n = ⌈ 2πδ ⌉ do
13: p′1 ← Project(Cx1

center(α),P0) ▷ Project a point onto a plane

14: d =
√
∥Cx1

center(α)− p′1∥22 + (rmin + ∥p0 − p′1∥2)2

15: if d < 2rmin then
16: return False ▷ Violates the second condition in Thm. 1

17: return True

Alg. 2 line 5 and 8 both call a function that computes a
2D Dubins path that starts from an orientation constrained
configuration and ends at an orientation unconstrained 3D
point. Here, we consider the Dubins path to start with
a maximum curvature segment, following a straight-line
segment. Function Shortest2D(·) is detailed in Alg. 3 and
Fig. 10.

III. CONCLUSION

We see this method to be a building block for potential
motion planners for medical steerable needles. With the
theorem and method we provide, we can do local connec-
tions between configurations, thus making PRM and RRT*

p0

Cx1center(α)

p′￼1

Fig. 9: Consider the case of computing the furthest distance from a point,
p = Cx1

center(α), to a circle, Cx0
center, on a plane. The distance from p to

any point along the circle equals to
√
h2 + d2, where h = ∥p − p′1∥2

is the distance from p to the plane and d is the distance from p′1 to the
point along the circle. Clearly, h is a constant for a given scenario and the
maximum distance is achieved along the straight line defined by p′1 and p0
since ∥p′1 − Cx0

center(β)∥2 ≤ ∥p′1 − p0∥2 + rmin.
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Fig. 10: Illustration of function Shortest2D(·). Since a plane is uniquely
defined by x and t (set aside the singular case where p⃗t = λTangent(x)),
the trajectory p → t′ → t can be deterministically computed. Refer to
Alg. 3 for detailed computation.



Algorithm 2 ComputeBoundedCurvatureConnection
Input: x0,x1, rmin

1: ε← 1e−6 ▷ Define the error threshold

2: t0 ← Pos(x0), t1 ← Pos(x1) ▷ Initialize transition points

3: while True do
4: ttmp

0 ← Shortest2D(x0, t1, rmin)

5: ε0 ← ∥t0 − ttmp
0 ∥2, t0 ← ttmp

0

6: ttmp
1 ← Shortest2D(x1, t0, rmin)

7: ε1 ← ∥t1 − ttmp
1 ∥2, t1 ← ttmp

1

8: if ε0 ≤ ε and ε1 ≤ ε then
9: break

10: return {t1, t2}

Algorithm 3 Shortest2D
Input: x, t, rmin

1: p← Pos(x), v← Tangent(x) ▷ Get position and orientation

2: if p⃗t = λv for λ ∈ R then
3: return p ▷ Singular case

4: yrel = dot(v, p⃗t)
5: if yrel < 0 then
6: yrel ← −yrel
7: v← −v
8: vc = Normalize(p⃗t− yrel · v)
9: xrel ←

√
∥p− t∥22 − y2rel

10: d←
√

y2rel + (xrel − rmin)2

11: α← arccos( rmin

d ), β ← arcsin(yrel

d )

12: if xrel < rmin then
13: θ ← β − α

14: else
15: θ ← π − β − α

16: if θ < π
2 then

17: δx← rmin(1− cos θ), δy ← rmin sin θ
18: else
19: δx← rmin(1 + cos θ), δy ← rmin sin θ

20: t′ ← p+ δx · vc + δy · v
21: return t′

style planners to be directly applicable to steerable needles.
Additionally, the theorem we provide might also serve as a
validation method, when the start and goal orientations are
constrained.
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