
Computationally-Efficient Roadmap-based Inspection Planning via
Incremental Lazy Search

Mengyu Fu1, Oren Salzman2, and Ron Alterovitz1

Abstract— The inspection-planning problem calls for comput-
ing motions for a robot that allow it to inspect a set of points
of interest (POIs) while considering plan quality (e.g., plan
length). This problem has applications across many domains
where robots can help with inspection, including infrastructure
maintenance, construction, and surgery. Incremental Random
Inspection-roadmap Search (IRIS) is an asymptotically-optimal
inspection planner that was shown to compute higher-quality
inspection plans orders of magnitudes faster than the prior
state-of-the-art method. In this paper, we significantly accel-
erate the performance of IRIS to broaden its applicability to
more challenging real-world applications. A key computational
challenge that IRIS faces is effectively searching roadmaps for
inspection plans—a procedure that dominates its running time.
In this work, we show how to incorporate lazy edge-evaluation
techniques into IRIS’s search algorithm and how to reuse
search efforts when a roadmap undergoes local changes. These
enhancements, which do not compromise IRIS’s asymptotic
optimality, enable us to compute inspection plans much faster
than the original IRIS. We apply IRIS with the enhancements to
simulated bridge inspection and surgical inspection tasks and
show that our new algorithm for some scenarios can compute
similar-quality inspection plans 570× faster than prior work.

I. INTRODUCTION

We consider the problem of inspection planning where a
robot needs to inspect a set of points of interest (POIs) in a
given environment with its on-board sensor while optimizing
plan cost. This problem has numerous applications such
as product surface inspections for industrial quality con-
trol [1], structural inspections with unmanned aerial vehicles
(UAVs) [2], [3], [4], [5], [6], ship-hull inspections [7], [8],
[9], underwater inspections for scientific surveying [10],
[11], [12], [13], and patient-anatomy inspections in medical-
endoscopic procedures for disease diagnosis [14].

Roughly speaking, the inspection-planning problem is
computationally challenging because we need to simultane-
ously reason both about plan cost and about inspecting the
POIs. Unfortunately, even computing a minimal-cost plan
(without reasoning about inspection) is already PSPACE-
hard in the general case [15]. The problem is exasperated
in our setting as the search space over motion plans grows
exponentially with the number of POIs to inspect [16].
Thus, the cost of naı̈vely-computed inspection plans may be

This project was supported by the United States National Science
Foundation (NSF) by award 2008475, by the US-Israel Binational Science
Foundation (BSF) by award 1018193, and by the Isaeli Ministry of Science
& Technology (MOST) by award 102583.

1M. Fu and R. Alterovitz are with the Department of Computer Science,
University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
{mfu,ron}@cs.unc.edu

2Oren Salzman is with Computer Science Department, Technion - Israel
Institute of Technology, Israel. osalzman@cs.technion.ac.il

Fig. 1: Top: Example applications of inspection planning. Top left: An
unmanned aerial vehicle (blue sphere) inspecting a bridge with its on-
board sensor (e.g., camera) by following the inspection plan (aquamarine).
Points of interest (POIs) are shown as orange spheres (visible POIs are
green in zoomed-in part). A POI is considered inspected if it is visible to
the sensor. Top right: The Continuum Reconfigurable Incisionless Surgical
Parallel (CRISP) robot [17], [18], a medical robot composed of flexible
needle-diameter tubes and equipped with a camera, can perform endoscopic
diagnosis in the pleural cavity (the space between the lung surface and chest
wall) for a patient with excess fluid surrounding the lung. The inspection
enables a physician to diagnose underlying disease. Bottom: IRIS [16]
computes a collision-free plan (aquamarine) to inspect POIs (orange dots).
It searches a roadmap (dashed edges) implicitly defined by a tree structure
(vertices and solid edges) embedded in the configuration space rooted at the
start configuration (blue vertex). As the roadmap is densified, the resulting
inspection plan asymptotically converges to a global optimum.

orders of magnitude higher than the cost of an optimal plan,
and computing a high-quality plan (especially with bounds
on the solution quality) may be extremely time-consuming.
For time-sensitive applications, generating a high-quality
inspection plan in a short computation time (i.e., the time
between starting to solve an instance of the problem and
getting a result) is critical. For example, for patient anatomy
inspection planned according to pre-operative medical im-
ages (Fig. 1 top right), a short computation time reduces
overall procedure time and makes faster diagnosis possible,
which has the potential to improve patient outcomes. Even
for non-time-sensitive applications (e.g., bridge inspection as
shown in Fig. 1 top left), better computing efficiency means,
with the same computing power, we can achieve similar-
quality results faster or achieve better-quality results given
the same computation time.

To enable faster computation of high-quality inspection
plans, we propose algorithmic enhancements to accelerate
the performance of Incremental Random Inspection-roadmap
Search (IRIS) [16]. IRIS constructs an incrementally-

densified roadmap, a graph representing robot states and
transitions between the states. Then IRIS searches over the
roadmap for a near-optimal inspection plan. In this paper,
we accelerate IRIS’s performance while retaining its formal
guarantee of asymptotic optimality.

We accelerate IRIS’s performance in two significant ways.
First, we need to build roadmaps that are compact and yet
informative for inspection planning. In this paper, we present
a simple-yet-effective solution where we reduce the number
of samples that fail to inspect previously-uncovered POIs
(i.e., POIs not seen by the robot’s sensor from any prior robot
state on the roadmap) with coverage-informed sampling
during roadmap construction. Second, we observe that graph
search dominates computation time when the graph grows
larger, motivating the need for a fast method to effectively
search the gradually-densified roadmap. The original IRIS
runs every search iteration from scratch, disregarding that the
roadmap is incrementally densified, but search efforts from
previous iterations are potentially helpful in later iterations.
So in this paper, we show (i) how to incorporate refined lazy
edge-evaluation techniques [19] into IRIS and (ii) how to
reuse search efforts when a roadmap locally changes.

These enhancements, which do not compromise IRIS’s
asymptotic optimality, enable us to compute inspection plans
much faster than the original IRIS. We evaluate our algorithm
in simulation in bridge inspection and surgical inspection
scenarios. Experimental results show that IRIS with the
enhancements for some scenarios can compute inspection
plans of similar-quality 570× faster than the original IRIS.

II. RELATED WORK

Inspection planning typically calls for solving two sub-
tasks: (i) viewpoints planning that determines a set of
viewpoints collectively covering all POIs and (ii) trajec-
tory planning that determines a trajectory connecting the
viewpoints. Many methods solve these subtasks separately.
For viewpoints planning, early methods compute a minimal
set of viewpoints by solving the Art Gallery Problem [20].
However, a minimal set of viewpoints doesn’t guarantee the
optimality of the final plan [21]. So later methods find only
a set of viewpoints that satisfies the inspection requirements.
Then the trajectory-planning task is usually formulated using
variants of the Traveling Salesman Problem (TSP) [22], [23],
[24], [25]. To improve the quality of the solution, some
use trajectory optimization [26], [27] while others resample
viewpoints [3], [4], or adaptively sample viewpoints [6].
Unfortunately, this decomposition into two separate steps
forgoes any guarantees on the quality of the solution.

Most existing methods for inspection planning (as men-
tioned above) do not provide formal guarantees on the quality
of final solutions. But recent approaches [16], [21], [28],
[29] provide asymptotic guarantees by making use of ad-
vances in sampling-based motion planners [30]. Specifically,
these methods are based on asymptotically-optimal motion
planners [31] such as the probabilistic roadmap* (PRM*),
the rapidly-exploring random tree* (RRT*), and the rapidly-
exploring random graph (RRG) [32]. Roughly speaking,

these methods guarantee that as the number of samples used
by the algorithm approaches infinity, the cost of the solution
obtained converges to the optimal cost. Such an asymptotic-
optimality guarantee comes at a price of long computation
time. Notable among the inspection planners that do provide
formal guarantees on the quality of the solution, IRIS was
shown to compute higher-quality inspection plans orders of
magnitudes faster [16] than the prior state-of-the-art method,
Rapidly-exploring Random Tree of Trees (RRTOT) [28].

For additional related work discussing the connection of
inspection planning to other fields, please refer to [33], [34].

III. PROBLEM DEFINITION

The robot operates in some physical workspace W ⊂
Rd where d ∈ {2, 3}. The workspace is cluttered with
obstacles Wobs ⊂ W . A robot’s configuration q is a vector
of parameters that uniquely defines its state (e.g., joint angles
for a manipulator arm, pose for an aerial vehicle), and the
set of all configurations C is defined as its configuration
space or C-space. Given a configuration q, we can compute
the subset of the workspace W occupied by the robot
Occupancy(q) ⊂ W . We say that q is collision free if
Occupancy(q) ∩Wobs = ∅ and in-collision otherwise. This
subdivides the C-space C into the free space Cfree ⊂ C
and obstacle space Cobs = C \ Cfree. A robot’s path is a
mapping π : [0, 1]→ C. It is valid if it follows the kinematic
constraints of the robot and if ∀t ∈ [0, 1], π(t) is collision
free. In this work we will discretize the path into a finite
sequence of configurations {π(t0), . . . , π(tk)} with k ≥ 0,
ti < ti+1, and ti ∈ [0, 1]. We use linear interpolation between
configurations for collision checking. We are given some
cost function Cost : C × C → R and we extend it to paths
Cost(π) =

∑k−1
i=0 Cost(π(ti), π(ti+1)). Our framework can

deal with general cost functions, but in this particular work,
we use path length `(·) as cost.

We are given a discrete set I = {i0, ..., iN} ⊂ W of points
of interest (POIs) that we need to inspect given some sensor
mounted on the robot. The sensor is modeled by the mapping
S : C → 2I (where 2I is the powerset of I) that states which
POIs can be seen from a given configuration. In our context,
a configuration is also a viewpoint for inspection. We will
say that a POI i ∈ I is covered by a configuration q (or
that q covers i) if i ∈ S(q). By a slight abuse of notation,
we extend the sensor model to paths and have that S(π) =⋃k
i=0 S(π(ti)) is the inspection coverage of a path π.
Given a C-space C, a start configuration qs ∈ Cfree, a set of

POIs I, a sensor model S, and a cost function Cost, the opti-
mal inspection plan is a valid path π∗ = argminπ∈ΠCost(π).
Here, Π is the set of paths maximizing the inspection cov-
erage, more formally, Π = {π|π = argmaxπ∈Πqs

|S(π)|},
where | · | is the cardinality and Πqs is the set of paths
starting from qs.

IV. ALGORITHMIC BACKGROUND

A. Incremental Random Inspection-roadmap Search (IRIS)

IRIS incrementally constructs a sequence of increasingly-
dense graphs, or roadmaps, embedded in the C-space and

computes an inspection plan over the roadmaps as they are
constructed [16]. To build the roadmap, IRIS builds an RRG.
However, since not all the edges will be used and edge
evaluation can be computationally expensive, IRIS takes a
lazy edge-evaluation approach. This is done by explicitly
constructing an RRT [30] (which is a subgraph of an RRG
when constructed using the same set of vertices) and leaving
all other edges un-evaluated that implicitly define the RRG.
The rest of the edges are evaluated on demand during the
graph search (for more details see Sec. V).

Computing an optimal-inspection plan on a roadmap G =
(V, E) with n vertices is computationally hard because we
need to compute the shortest path on a so-called inspection
graph. Here, each vertex corresponds to a vertex v ∈ V of
the original graph G and a subset I of I, representing a path
ending at v while inspecting I . Thus, the inspection graph has
O(n × |2I |) vertices. To search this inspection graph, IRIS
employs a novel search algorithm that approximates π∗, the
optimal inspection path on the graph. To this end, IRIS uses
two parameters, ε and p, to ensure that the path obtained from
the graph-search phase is no longer than 1 + ε the length of
π∗ and covers at least p percent of the POIs covered by π∗.
To ensure convergence to the optimal inspection path, ε is
reduced and p is increased between search iterations. This is
referred to as tightening the approximation factors.

We now briefly describe the graph-search algorithm as it
is key to understanding the algorithmic contributions of this
work. For an in-depth description of the search algorithm,
the rest of the framework, and its theoretical guarantees,
see [16]. The search runs an A*-like search [35] but instead of
having each node1 represent a path from the start vertex qs,
each node is a path pair PP that is composed of a so-called
achievable path (AP) and potentially achievable path (PAP).
As its name suggests, an AP represents a path in the graph
from qs. In contrast, a PAP is not necessarily realizable and
is used to bound the quality of paths represented by a specific
PP. A PP = (P, P̃), where P is the AP and P̃ is the PAP,
is said to be ε, p-bounded if (i) `(P) ≤ (1 + ε)`(P̃) and
(ii) |S(P)| ≥ p · |S(P̃)|.

Similar to A*, the algorithm uses an OPEN and CLOSED
list to track nodes that have not and have been considered,
respectively. It starts with the trivial path pair, PPqs

, where
both AP and PAP represent the trivial path {qs}.

At each iteration, it pops a node from the OPEN list,
and checks if the search can terminate. If not, the node
is extended and added to the CLOSED list. While doing
so, the algorithm tests if successor nodes can subsume or
be subsumed by another node. These two core operations
(extending and subsuming) are key to the efficiency of the
algorithm and we now elaborate on them for a given path
pair PPu = (Pu, P̃u) (here Pu is AP and P̃u is PAP):

(i) Extending operation: Extending PPu by edge e =
(u, v) ∈ E (denoted PPu + e) will extend both Pu
and P̃u by edge e. The resulting path pair is PPv =

1A node, representing a search state, is different from a vertex, represent-
ing a configuration in the underlying roadmap.

(Pv, P̃v), where the AP satisfies S(Pv) = S(Pu) ∪
S(v), `(Pv) = `(Pu) + `(e), and the PAP satisfies
S(P̃v) = S(P̃u) ∪ S(v), `(P̃v) = `(P̃u) + `(e).

(ii) Subsuming operation: Given two path pairs PP1 =
(P1, P̃1) and PP2 = (P2, P̃2) that end at the same
vertex, the operation of PP1 subsuming PP2 (denoted
PP1⊕PP2) will create a new path pair PP1⊕PP2 :=(
P1,
(
S(P̃1) ∪ S(P̃2),min(`(P̃1), `(P̃2))

))
.

Roughly speaking, the subsuming operation allows to reduce
the number of paths considered by the search. However, to
ensure that the solution returned by the algorithm approx-
imates the optimal inspection path, subsuming only occurs
when the resultant PP is ε, p-bounded.

B. IRIS limitations

IRIS was shown to dramatically outperform the prior state-
of-the-art in asymptotically-optimal inspection planning [16].
However, a close analysis of the algorithm’s building blocks
allows us to pinpoint the computational challenges faced by
IRIS which, in turn, will allow us to suggest new algorithmic
enhancements.

(i) Configuration sampling in roadmap generation. To
generate a roadmap, IRIS randomly samples configu-
rations in the C-space. Thus, the coverage of a newly-
sampled configuration is not accounted for when gener-
ating the roadmap. This has the potential to increase the
roadmap size without adding new (or adding very little)
POIs which, in turn, will induce long search times.

(ii) Edge evaluation during graph search. As mentioned
in [16], the edge-evaluation scheme employed by IRIS
assumes that edge-evaluation dominates the algorithm’s
running time. This is true when the size of the roadmap
is small but as the number of vertices grows, search
dominates the algorithm’s running time.

(iii) Iterative graph search. IRIS runs a new graph search
after adding configurations to the roadmap. In the orig-
inal formulation, the search tree obtained from previous
search episodes is discarded and the search algorithm
is run from scratch. This can be highly inefficient as
often the new graph is very similar to the one used in
the previous iterations.

V. METHOD

We propose several enhancements to IRIS corresponding
to the algorithmic challenges detailed in Sec. IV-B.2

A. Coverage-informed sampling

To improve the computational efficiency of the original
IRIS, we propose to replace uniform sampling of configu-
rations (used to construct the roadmap) with an approach
that we call coverage-informed sampling that accounts for
the inspection coverage of sampled configurations. Our
approach, which bears resemblance to advanced sampling
schemes used in motion planning (see, e.g., [37], [38]), works

2For complete pseudo-code describing our enhancements, see the ex-
tended version of our paper [36].

as follows: given a randomly-sampled configuration qrand,
we accept it directly with some probability paccept > 0.
If the configuration was not directly accepted, we test if
|S(V) ∪ S(qrand)| > |S(V)|, where S(V) is the set of
POIs collectively covered by roadmap vertices. If the test
passes (namely, if qrand covers previously-uncovered POIs),
we accept qrand and add it to the roadmap. If not, the
configuration is rejected.

Randomly accepting qrand is important for maintaining
the theoretical guarantees of IRIS (i.e., asymptotic conver-
gence to the optimal inspection path), since qrand can be
used to reduce path length regardless of its coverage. This
is similar to the way goal-biasing is employed in sampling-
based motion planners [39].

In addition, as graph search dominates the algorithm’s
running time, we would typically like to initiate a search
only when roadmap coverage increases significantly. Thus,
we define a relaxation parameter ω ∈ (0, 1] and run a new
search only when |S(πprev)| < ω · p · |S(V)|. Here, πprev

is the path returned by the previous search iteration. This
can be seen as a generalization of the original IRIS which
uses ω = 1.0. As with the original IRIS, after Nmax new
vertices were sampled without a new search being initiated,
we run a new search regardless of the additional coverage.
This allows us to keep reducing the plan’s length even when
the coverage does not increase (or increases slowly). In all
our experiments, we use ω = 0.9 and Nmax = 200.

B. Refined lazy edge evaluation

Similar to many motion-planning algorithms, the original
IRIS takes a lazy edge-evaluation approach [40], [41], [42],
[43], [44] during graph search. Specifically, it uses the
LazySP framework [43] where all edges are assumed to
be collision-free and the search is run until a path is found.
Edges along this path are then evaluated one-by-one. If we
find an in-collision edge, we discard it and rerun the search.
If all edges are collision-free then the path is returned. While
this approach was shown to minimize the number of edges
evaluated [45], the computational price of having multiple
search episodes can increase overall running times in motion
planning algorithms [46], [47].

An alternative lazy search algorithm is LazyA* which
was shown to minimize search efforts [19]. Here, edges
are assumed to be collision-free until a node is expanded
and only then its incoming edge is evaluated (for additional
details, see [19]). Unfortunately, we cannot use a LazyA*-
like approach as-is because of the way paths are subsumed
in the near-optimal search algorithm. Specifically, in our
setting, when a node (PP) is to be extended, it may have
already subsumed other nodes (PPs). If we discard such a
node because its incoming edge is in-collision (as would have
been done in LazyA*) then we discard all the information
about the subsumed nodes, including potentially-valid ones.
This subtlety requires us to additionally validate a node’s
incoming edges when it is to subsume other nodes.

To this end, we consider two types of nodes (PPs)—
trivial (T) and non-trivial (NT) which correspond to PPs that

Fig. 2: Two different edge evaluation cases. Each node in the search tree
is a PP, and nodes with dashed boundaries have been subsumed. Solid
and dashed lines are validated and yet-to-be validated incoming edges,
respectively. Red edges are the edges being validated in the current step.
First case: validating incoming edge of a T-node ((a) to (b)). When extending
a T-node A, we validate its incoming edge. Second case: validating incoming
edge when a T-node is to subsume another node ((b) to (c)). When a T-node
B is to subsume another node C, we validate its incoming edge.

did not and did subsume another PP, respectively. Note that
by our definition a T-node may be a descendent of an NT-
node. We validate the incoming edge of a T-node when either
(i) it is extracted from the OPEN list (similar to LazyA*) or
when (ii) it is to subsume another node (thus becoming an
NT-node which implies that all incoming edges of NT-nodes
are validated). For a visualization, see Fig. 2.

C. Incremental search by reusing efforts across iterations

In the original IRIS, every new search is run from scratch
and the only information shared between search iterations is
edge validity. Fortunately, reusing search information across
different search iterations is a well-studied problem [48],
[49], [50] that has been successfully used in many motion-
planning algorithms (see, e.g., [41], [44], [46], [51], [52]).

In typical approaches, between two search episodes, all
nodes and data structures (e.g., OPEN and CLOSED lists
in A*) are stored. After an edge or vertex is added or
removed from the graph, we first identify all inconsistent
nodes (namely, whose cost changed due to the change in the
graph), then their cost is updated and they are re-added to the
relevant data structures. Unfortunately, we cannot use these
methods as-is because of the way the approximation factor
changes between search iterations.

The crux of the problem is that even if there is no change
in the graph, tightening the approximation factors ε and p
may cause nodes (i.e., path pairs) in the search tree to no
longer be ε, p-bounded (for the new values of ε and p). To
this end, we first discuss how we ensure that before executing
a new search, all nodes in the search tree (namely, in the
OPEN and CLOSED lists) are ε, p-bounded when there are
no changes to the graph. We then describe how to account
for the additional vertices and edges added to G.

1) Accounting for tightening of the approximation factors:
Recall that in our search algorithm, we have two basic
operations on nodes: extending the associated path pair PP
by an edge and subsuming another path pair. The former
can only decrease the (relative) gap between the achievable
path (AP) and the potentially achievable path (PAP) of the
PP. In contrast, the latter may increase the (relative) gap
between the AP and PAP of the PP. Thus, after tightening
the approximation factors ε and p, nodes that are still ε, p-
bounded may have unbounded predecessors.

If a node is no longer ε, p-bounded, we need to “rollback“
previous subsuming operations to obtain nodes that are ε, p-
bounded. This requires us to store for each PP not only
the AP and PAP but also a list of all PPs that were sub-
sumed and may dramatically increase the program’s memory
footprint. To reduce unnecessary memory usage, we perform
the following optimization: when the subsuming operation
PP1⊕PP2 is performed, if S(P1) ⊇ S(P̃2), `(P1) ≤ `(P̃2),
then PP2 is not stored in the subsumed list. This is because
the PAP of PP2 (which is a lower bound on the solution
that can be obtained using that node) is strictly dominated
by the AP of PP1 (which, by definition, can be obtained). To
further reduce memory usage, instead of storing PP2 directly,
we store the predecessor of PP2. Since the ending vertex
of PP2 is the same as PP1 thus is known, we can easily
reconstruct PP2 from its predecessor if need to. Since PP2

is not directly stored, the nodes subsumed by PP2 (if any)
are inherited by PP1 when PP1 subsumes PP2.

To reuse search efforts, we define two characteristics of
nodes. First, a node is revealed (if stored in the OPEN
or CLOSED list) or hidden (if subsumed and stored in
the subsumed list of another node). And a node can be a
reusable, boundary, or non-reusable node (see also, Fig. 3):

(i) Reusable nodes—a node is reusable if it is ε, p-
bounded and all its predecessors are also ε, p-bounded.

(ii) Boundary nodes—a node is a boundary node if it is
no longer ε, p-bounded, but all its predecessors are.

(iii) Non-reusable nodes—a node is non-reusable if it has
at least one predecessor that is no longer ε, p-bounded.

As the name suggests, reusable nodes can be used as-is.
Thus, we keep revealed reusable nodes in the OPEN or
CLOSED list, depending on where they were when the
previous search terminated.

Before we discuss how we handle boundary and non-
reusable nodes, notice that given a boundary node PPv with
parent PPu, we have that extending PPu by the edge (u, v)
(denoted as PPu + (u, v)) yields a new path pair P̂Pv to v
that is ε, p-bounded (with an empty list of subsumed nodes).
Thus, we start by adding all revealed boundary and non-
reusable nodes into a list which we call RELEASE and
removing them from the OPEN or CLOSED list. Nodes from
RELEASE are popped one by one until it is empty. For
each node, PPv , popped from RELEASE we (i) add PPv
(if it is a reusable node) or PPu + (u, v) (if it is a boundary
node) to the OPEN list (while testing for dominance as in the
original IRIS), and (ii) add all of PPv’s subsumed nodes to
RELEASE in case it is a boundary or a non-reusable node.

While a complete proof of the correctness of our approach
is beyond the scope of this paper, we notice that: (i) after
the above operations, all revealed nodes (either in the OPEN
or CLOSED list) are ε, p-bounded; (ii) for every node PPv
(either revealed or hidden) from the previous search iteration,
if PPv is not in the CLOSED list, then either PPv or one of
its predecessors is either in the OPEN list or in the subsumed
list of a node in the OPEN or CLOSED list, which means that
all nodes are accounted for. The above properties guarantee

Fig. 3: Visualization of how we reuse search efforts. Reusable nodes are
in green, boundary nodes are in yellow and non-reusable nodes are in red.
Pink nodes are obtained directly from previous search while gray nodes are
newly constructed in the current search.

that the new search still results in a near-optimal solution.
2) Accounting for roadmap updates: To further account

for new vertices and edges, for any node PPu in the
CLOSED list corresponding to a vertex u ∈ V that has an
edge (u, v) to a newly-inserted vertex v, we add the new
successor PPu + (u, v) to the OPEN list.

3) Putting it all together: To summarize, our new search
algorithm receives as input not only G, qs, ε and p, but
also the OPEN and CLOSED lists from the previous search
iteration (if it is the first iteration then both are empty).
We start by adding the node used to obtain the path in the
previous iteration back into the OPEN list (if it is the first
iteration, we add PPqs). We then continue to update the
OPEN and CLOSED lists to account for the tightening of the
approximation factors (Sec. V-C.1) and then we update the
OPEN list to account for the roadmap updates (Sec. V-C.2).
Finally, we run our search algorithm without any changes.

VI. RESULTS

We evaluated our algorithmic enhancements on two sim-
ulated scenarios, a bridge-inspection task and a medical-
inspection task. In each scenario, we compared the orig-
inal IRIS with four variants, namely IRIS C, IRIS L,
IRIS CL, and IRIS CLI, where C, L, and I stand for
Coverage-informed sampling, refined Lazy edge validation,
and Incremental search by reusing search efforts, respec-
tively. For reference, we also run RRTOT [28]. Our eval-
uation metrics include path coverage and path length as a
function of the running time, and for IRIS and its variants,
we also look at the relative search efficiency compared to
IRIS CLI. We define search efficiency as, for a given inspec-
tion coverage s, the relative time each algorithm spends on
search (and not on roadmap construction or edge evaluation)
to return a path π that satisfies |S(π)| ≥ s for the first time.
Search efficiency is compared only in Fig. 4 (c) and (f), while
Fig. 4 (a) and (d) use the total running time.

Our implementation is based on the publicly-available
C++ implementation of IRIS [53] (new code corresponding
to the improvements suggested in this work are also incorpo-
rated to this repository). All experiments were run on a dual
2.1GHz 16-core Intel Xeon Silver 4216 CPU and 100GB of
RAM. All experiments were run for 50, 000 seconds. The
initial values of ε, p are denoted as ε0, p0 and we updated
them with pi = pi−1+f ·(1−pi−1), εi = εi−1+f ·(0−εi−1),
where f is a parameter controlling the tightening of the
approximation factors. We used f = 10−4.

Fig. 4: Result comparison of different methods. (a)–(c): Bridge inspection scenario. All variants used hyperparameters paccept = 0.05, p0 = 0.85, ε0 =
10.0. (d)–(f): Pleural cavity inspection scenario. All variants used hyperparameters paccept = 0.1, p0 = 0.9, ε0 = 15.0.

A. Bridge inspection scenario

Almost 40% of the bridges in the US exceed their 50-year
design life [54], and regular inspections are critical to ensure
bridge safety. Existing inspection methods are typically ex-
pensive, and using UAVs to autonomously inspect bridges
could potentially reduce inspection time and costs. In this
scenario, a UAV with a camera is tasked with inspecting a
bridge (Fig. 1 top left), which includes 3,346 POIs extracted
from a 3D mesh model.

The UAV’s C-space is R3 × SO(2): it may translate in
3D and rotate around its vertical axis, and the camera can
further rotate around the pitch axis. The camera is modeled
as having a field of view of 94 degrees and an effective
inspecting range of 10 meters.

Fig. 4 (a), (b) show that all IRIS variants have better
performance than the original IRIS since they achieve better
inspection coverage faster while keeping similar plan lengths.
Specifically, IRIS CLI achieves the best performance, reach-
ing 23% more inspection coverage than the original IRIS
and is 570× faster in reaching a coverage of 60%. IRIS CLI
also achieves 44% more inspection coverage than RRTOT.
Fig. 4 (c) compares the speedup in graph search time of
IRIS CLI to reach a given inspection coverage comparing to
other variants. As we can see, for search efficiency, IRIS CLI
is 830× faster than the original IRIS for a coverage of 60%,
and it is roughly 12× faster than the second-best method,
IRIS CL, for a coverage of 78%.

B. Pleural cavity inspection scenario

A pleural effusion is a serious medical condition in which
excess fluid builds up between the lungs and chest wall
and can cause lung collapse. Pleural effusions may result
from many different diseases, including cancer. To effectively
diagnose the cause of pleural effusion, doctors need to
visually inspect the inner surface of the pleural cavity, the
fluid-filled space between the lungs and the chest wall. In this
scenario, a CRISP robot [18], [17] with a chip-tip camera
performs the endoscopic diagnosis (Fig. 1 top right). The
pleural cavity is segmented from a patient Computerized
Tomography (CT) scan, and we densely sample 4,203 POIs
on the surface of the pleural cavity.

Composed of flexible needle-diameter tubes, the CRISP
robot requires smaller incisions compared to traditional endo-
scopic instruments, thus reducing patient pain and shortening

the recovery time. The tubes are inserted into the patient body
separately and assembled into a parallel structure with snares.
When manipulating the tubes outside the body, the shape of
the robot inside the body changes accordingly, changing the
pose of the chip-tip camera to inspect surrounding anatomy.
In our scenario, we use a two-tube CRISP robot. At the entry
point, each tube can rotate in three dimensions (yaw, pitch,
and roll) and translate in one dimension (insert or retract).
So the system has a C-space C ⊆ SO(3)2 × R2.

The robot’s forward kinematics (FK) is computationally
expensive: computing the shape of the robot requires numer-
ical methods to model the torsional and elastic interactions
between all the flexible tubes of the parallel structure [18].
Thus FK-involved procedures, including roadmap construc-
tion and edge validation during graph search, are time-
consuming. In this scenario, for the initial 50% coverage,
the original IRIS shows better efficiency since fewer edges
are validated. However, Fig. 4 (d), (e) show that as G
grows, the performance of the original IRIS plateaus as
the time spent on search begins to dominate, while other
variants keep making progress. IRIS CLI reaches 12% more
inspection coverage than the original IRIS and is 6× faster
in reaching a coverage of 67%. IRIS CLI also achieves 35%
more inspection coverage than RRTOT. When it comes to
search efficiency, Fig. 4 (f) shows IRIS CLI is over 3, 200×
faster than the original IRIS for a coverage of 67% and 5×
faster than IRIS CL for a coverage of 79%.

VII. CONCLUSION

In this paper, we introduced a faster inspection planning al-
gorithm based on enhancements to IRIS. The new algorithm
uses coverage-informed sampling to construct more effective
roadmaps and uses two enhanced search techniques to im-
prove the computational efficiency of the near-optimal search
algorithm employed by the original IRIS. More specifically,
one is refined lazy edge validation that saves computation
time for search when the roadmap is densified, and the other
is reusing search efforts when a roadmap undergoes local
changes. Simulation experiments in two scenarios show the
improved search algorithm is dramatically faster than the
original one. With better computational efficiency, we can
achieve similar-quality plans with significantly shorter com-
putation time while retaining IRIS’s asymptotic optimality.

REFERENCES

[1] R. Raffaeli, M. Mengoni, M. Germani, and F. Mandorli, “Off-line view
planning for the inspection of mechanical parts,” International Journal
on Interactive Design and Manufacturing (IJIDeM), vol. 7, no. 1, pp.
1–12, 2013.

[2] P. Cheng, J. Keller, and V. Kumar, “Time-optimal UAV trajectory
planning for 3d urban structure coverage,” in IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS). IEEE, 2008, pp. 2750–2757.

[3] A. Bircher, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel,
and R. Siegwart, “Structural inspection path planning via iterative
viewpoint resampling with application to aerial robotics,” in IEEE Int.
Conf. Robotics and Automation (ICRA). IEEE, 2015, pp. 6423–6430.

[4] A. Bircher, M. Kamel, K. Alexis, M. Burri, P. Oettershagen, S. Omari,
T. Mantel, and R. Siegwart, “Three-dimensional coverage path plan-
ning via viewpoint resampling and tour optimization for aerial robots,”
Autonomous Robots, vol. 40, no. 6, pp. 1059–1078, 2016.

[5] R. Almadhoun, T. Taha, L. Seneviratne, J. Dias, and G. Cai, “GPU
accelerated coverage path planning optimized for accuracy in robotic
inspection applications,” in 2016 IEEE 59th International Midwest
Symposium on Circuits and Systems (MWSCAS). IEEE, 2016, pp.
1–4.

[6] R. Almadhoun, T. Taha, D. Gan, J. Dias, Y. Zweiri, and L. Seneviratne,
“Coverage path planning with adaptive viewpoint sampling to con-
struct 3d models of complex structures for the purpose of inspection,”
in IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS). IEEE,
2018, pp. 7047–7054.

[7] G. A. Hollinger, B. Englot, F. Hover, U. Mitra, and G. S. Sukhatme,
“Uncertainty-driven view planning for underwater inspection,” in IEEE
Int. Conf. Robotics and Automation (ICRA). IEEE, 2012, pp. 4884–
4891.

[8] G. A. Hollinger, B. Englot, F. S. Hover, U. Mitra, and G. S. Sukhatme,
“Active planning for underwater inspection and the benefit of adaptiv-
ity,” Int. J. Robotics Research (IJRR), vol. 32, no. 1, pp. 3–18, 2013.

[9] B. Englot and F. S. Hover, “Three-dimensional coverage planning for
an underwater inspection robot,” Int. J. Robotics Research (IJRR),
vol. 32, no. 9-10, pp. 1048–1073, 2013.

[10] B. Bingham, B. Foley, H. Singh, R. Camilli, K. Delaporta, R. Eustice,
A. Mallios, D. Mindell, C. Roman, and D. Sakellariou, “Robotic tools
for deep water archaeology: Surveying an ancient shipwreck with an
autonomous underwater vehicle,” J. of Field Robotics, vol. 27, no. 6,
pp. 702–717, 2010.

[11] M. Johnson-Roberson, O. Pizarro, S. B. Williams, and I. Mahon,
“Generation and visualization of large-scale three-dimensional recon-
structions from underwater robotic surveys,” J. of Field Robotics,
vol. 27, no. 1, pp. 21–51, 2010.

[12] N. Gracias, P. Ridao, R. Garcia, J. Escartı́n, M. L’Hour, F. Cibecchini,
R. Campos, M. Carreras, D. Ribas, N. Palomeras, et al., “Mapping the
moon: Using a lightweight AUV to survey the site of the 17th century
ship ‘la lune’,” in OCEANS-Bergen, 2013 MTS/IEEE. IEEE, 2013,
pp. 1–8.

[13] M. A. Tivey, A. Bradley, D. Yoerger, R. Catanach, A. Duester,
S. Liberatore, and H. Singh, “Autonomous underwater vehicle maps
seafloor,” Eos, Transactions American Geophysical Union, vol. 78,
no. 22, pp. 229–230, 1997.

[14] A. Kuntz, C. Bowen, C. Baykal, A. W. Mahoney, P. L. Anderson,
F. Maldonado, R. J. Webster III, and R. Alterovitz, “Kinematic design
optimization of a parallel surgical robot to maximize anatomical
visibility via motion planning,” in IEEE Int. Conf. Robotics and
Automation (ICRA), 2018, pp. 926–933.

[15] D. Halperin, O. Salzman, and M. Sharir, “Algorithmic motion plan-
ning,” in Handbook of Discrete and Computational Geometry, Third
Edition. CRC Press LLC, 2018, pp. 1311–1342.

[16] M. Fu, A. Kuntz, O. Salzman, and R. Alterovitz, “Toward
asymptotically-optimal inspection planning via efficient near-optimal
graph search,” in Proceedings of Robotics: Science and Systems,
FreiburgimBreisgau, Germany, June 2019.

[17] P. L. Anderson, A. W. Mahoney, and R. J. Webster, “Continuum
reconfigurable parallel robots for surgery: Shape sensing and state
estimation with uncertainty,” IEEE Robotics and Automation Letters,
vol. 2, no. 3, pp. 1617–1624, July 2017.

[18] A. W. Mahoney, P. L. Anderson, P. J. Swaney, F. Maldonaldo, and R. J.
Webster III, “Reconfigurable parallel continuum robots for incisionless
surgery,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems
(IROS), 2016, pp. 4330–4336.

[19] B. J. Cohen, M. Phillips, and M. Likhachev, “Planning single-arm
manipulations with n-arm robots,” in Robotics: Science and Systems
(RSS), 2014.

[20] T. Danner and L. E. Kavraki, “Randomized planning for short inspec-
tion paths,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
2000, pp. 971–976.

[21] G. Papadopoulos, H. Kurniawati, and N. M. Patrikalakis, “Asymp-
totically optimal inspection planning using systems with differential
constraints,” in IEEE Int. Conf. Robotics and Automation (ICRA).
IEEE, 2013, pp. 4126–4133.

[22] S. Edelkamp, M. Pomarlan, and E. Plaku, “Multiregion inspection
by combining clustered traveling salesman tours with sampling-based
motion planning,” IEEE Robotics and Automation Letters, vol. 2, no. 2,
pp. 428–435, 2016.

[23] I. Gentilini, K. Nagamatsu, and K. Shimada, “Cycle time based multi-
goal path optimization for redundant robotic systems,” in IEEE/RSJ
Int. Conf. Intelligent Robots and Systems (IROS). IEEE, 2013, pp.
1786–1792.

[24] D.-S. Jang, H.-J. Chae, and H.-L. Choi, “Optimal control-based UAV
path planning with dynamically-constrained tsp with neighborhoods,”
in 2017 17th International Conference on Control, Automation and
Systems (ICCAS). IEEE, 2017, pp. 373–378.

[25] W. Jing, J. Polden, C. F. Goh, M. Rajaraman, W. Lin, and K. Shimada,
“Sampling-based coverage motion planning for industrial inspection
application with redundant robotic system,” in IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 5211–5218.

[26] B. Englot and F. S. Hover, “Sampling-based coverage path planning for
inspection of complex structures,” in Int. Conf. Automated Planning
and Scheduling (ICAPS), 2012, pp. 29–37.

[27] B. Bogaerts, S. Sels, S. Vanlanduit, and R. Penne, “A gradient-
based inspection path optimization approach,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 2646–2653, 2018.

[28] A. Bircher, K. Alexis, U. Schwesinger, S. Omari, M. Burri, and
R. Siegwart, “An incremental sampling–based approach to inspection
planning: The rapidly–exploring random tree of trees,” Robotica,
vol. 35, no. 6, pp. 1327–1340, 2017.

[29] P. Kafka, J. Faigl, and P. Váňa, “Random inspection tree algorithm
in visual inspection with a realistic sensing model and differential
constraints,” in IEEE Int. Conf. Robotics and Automation (ICRA),
2016, pp. 2782–2787.

[30] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[31] J. Gammell and M. Strub, “A survey of asymptotically optimal
sampling-based motion planning methods,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 4, no. 2021, pp. 1–25.

[32] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robotics Research, vol. 30, no. 7, pp. 846–
894, June 2011.

[33] H. Choset, “Coverage for robotics – A survey of recent results,” Annals
of Mathematics and Artificial Intelligence, vol. 31, pp. 113–126, 2001.

[34] R. Almadhoun, T. Taha, L. Seneviratne, J. Dias, and G. Cai, “A survey
on inspecting structures using robotic systems,” International Journal
of Advanced Robotic Systems, vol. 13, no. 6, p. 1729881416663664,
2016.

[35] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Trans. Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[36] M. Fu, O. Salzman, and R. Alterovitz, “Computationally-efficient
roadmap-based inspection planning via incremental lazy search,” arXiv
preprint arXiv:2103.13573v1 [cs.RO], 2021.

[37] J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, “Informed sampling
for asymptotically optimal path planning,” IEEE Trans. Robotics,
vol. 34, no. 4, pp. 966–984, 2018.

[38] D. Yi, R. Thakker, C. Gulino, O. Salzman, and S. S. Srinivasa, “Gener-
alizing informed sampling for asymptotically-optimal sampling-based
kinodynamic planning via Markov chain Monte Carlo,” in IEEE Int.
Conf. Robotics and Automation (ICRA), 2018, pp. 7063–7070.

[39] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[40] R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in
IEEE Int. Conf. Robotics and Automation (ICRA), 2000, pp. 521–528.

[41] K. Hauser, “Lazy collision checking in asymptotically-optimal motion
planning,” in IEEE Int. Conf. Robotics and Automation (ICRA), 2015,
pp. 2951–2957.

[42] L. Janson, E. Schmerling, A. A. Clark, and M. Pavone, “Fast marching
tree: A fast marching sampling-based method for optimal motion
planning in many dimensions,” Int. J. Robotics Research (IJRR),
vol. 34, no. 7, pp. 883–921, 2015.

[43] C. M. Dellin and S. S. Srinivasa, “A Unifying Formalism for Shortest
Path Problems with Expensive Edge Evaluations via Lazy Best-First
Search over Paths with Edge Selectors,” in Int. Conf. Automated
Planning and Scheduling (ICAPS), 2016, pp. 459–467.

[44] O. Salzman and D. Halperin, “Asymptotically-optimal Motion Plan-
ning using lower bounds on cost,” in IEEE Int. Conf. Robotics and
Automation (ICRA), 2015, pp. 4167–4172.

[45] N. Haghtalab, S. Mackenzie, A. D. Procaccia, O. Salzman, and S. S.
Srinivasa, “The provable virtue of laziness in motion planning,” in
Int. Conf. Automated Planning and Scheduling (ICAPS), 2018, pp.
106–113.

[46] A. Mandalika, O. Salzman, and S. Srinivasa, “Lazy receding horizon
A* for efficient path planning in graphs with expensive-to-evaluate
edges,” in Int. Conf. Automated Planning and Scheduling (ICAPS),
2018, pp. 476–484.

[47] A. Mandalika, S. Choudhury, O. Salzman, and S. S. Srinivasa, “Gener-
alized lazy search for robot motion planning: Interleaving search and
edge evaluation via event-based toggles,” in Int. Conf. Automated
Planning and Scheduling (ICAPS), 2019, pp. 745–753.

[48] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni, “Fully Dynamic
Algorithms for Maintaining Shortest Paths Trees,” J. Algorithms,
vol. 34, no. 2, pp. 251–281, 2000.

[49] G. Ramalingam and T. Reps, “On the Computational Complexity of
Dynamic Graph Problems,” Theor. Comput. Sci., vol. 158, no. 1&2,
pp. 233–277, 1996.

[50] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong Planning A*,”
Artificial Intelligence, vol. 155, no. 1-2, pp. 93–146, 2004.

[51] O. Salzman and D. Halperin, “Asymptotically Near-Optimal RRT for
Fast, High-Quality Motion Planning,” IEEE Trans. Robotics, vol. 32,
no. 3, pp. 473–483, 2016.

[52] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed
trees (BIT*): Sampling-based optimal planning via the heuristically
guided search of implicit random geometric graphs,” in Proc. IEEE
Int. Conf. Robotics and Automation (ICRA), May 2015, pp. 3067–
3074.

[53] M. Fu, “IRIS,” https://github.com/UNC-Robotics/IRIS, 2020, ac-
cessed: 2020-8-30.

[54] “ASCE 2017 infrastructure report card,” https://www.
infrastructurereportcard.org/wp-content/uploads/2016/10/
2017-Infrastructure-Report-Card.pdf.

	1363_FI.pdf

